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Abstract

A Vlasov-Maxwell equilibrium for a charged particle bunch is given in

the beam frame by the distribution function that is a function of the

single-particle Hamiltonian f = f(H), where in an axisymmetric cylinder

H = p2/2m + κ⊥r2/2 + κzz2/2 + qφ(r, z), the kinetic energy is p2/2m,

κ⊥ and κz are the external focusing coefficients in the transverse and

longitudinal directions, and φ is the electrostatic potential determined self-

consistently from Poisson’s equation ∇2φ = −4πq
∫

d3pf(H). The self-

field potential φ introduces a coupling between the otherwise independent

r and z motions. Under quite general conditions, this leads to chaotic

particle motion. Poisson’s equation is solved using a spectral method in z

and a finite-difference method in r, and a Picard iteration method is used

to determine φ self-consistently. For the thermal equilibrium distribution

f = A exp(−H/T), the single-particle trajectories display chaotic behavior.

The properties of the chaotic trajectories are characterized.
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Thermal Equilibrium

• External focusing potential Vext = κ⊥r2/2 + κzz2/2,
κ⊥ and κz are the external focusing coefficients.

• Hamiltonian

H =
p2
r

2m
+

p2
θ

2mr2
+

p2
z

2m
+

κ⊥r2

2
+

κzz2

2
+ qφ, (1)

where pr = mṙ, pθ = mr2θ̇ and pz = mż.

• Distribution function

thermal equilibrium f(H) =
n0

(2πmT)3/2
exp(−H/T). (2)

• Poisson’s equation

∇2φ = −4πqn, (3)

with number density n = n0 exp(κ⊥r2/2 + κzz2/2 + qφ).
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Normalization

• normalized lengths rb =
√

T/κ⊥, r̄ = r/rb and z̄ = z/rb,
normalized potential, φ̄ = qφ/T ,

∇2φ̄ = −2sb exp
(
−r̄2/2− ηz̄2/2− φ̄

)
, (4)

• dimensionless parameters

η = κz/κ⊥ sb = (4πq2 n0/m)/2ω2⊥

• Normalized Hamiltonian : H̄ = H/T ,

H̄ =
p̄2
r

2
+

p̄2
θ

2r̄2
+

p̄2
z

2
+

r̄2

2
+ η

z̄2

2
+ φ̄, (5)

p̄r = r̄′, p̄θ = r̄2θ′, p̄z = z̄′, and ′ = d/dt̄ where t̄ = t ω⊥

• Hereafter, we will use the normalized equations: the ‘bars’ will be
dropped and the ‘dot’ will denote the derivative with respect to the
normalized time.
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Picard Solution

• A mixed finite-difference, spectral method is used

φ(r, z) =
∑

φn(r) cos(nkz), (6)

φn(r) interpolates φn,i given on a radial grid.

• Laplacian operator : ∇2 = ∂2
r + r−1∂r + ∂2

z .

• The radial derivatives are approximated by the first order expressions.
∇2 becomes a tri-diagonal matrix for each harmonic.

• This allows a Picard iterative solution for the potential

given n, solve for φ given φ, solve for φ

• He we use Nr = 100,Nz = 50,Rw = 20 and Lz = 20.
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Phase Space

• For each selection of the dimensionless parameters (η, sb), a point in

phase space is described by (r, θ, z, pr, pθ, pz).

• The azimuthal angle θ is ignorable, thus the angular momentum pθ

is a constant of the motion. Each particle’s trajectory will lie on a

constant energy surface.

• A phase space subset in then specified by (pθ, H), and a point in this

space is given by (r, z, pr).

• Note that given (pθ, H) and (r, z, pr), pz is then constrained by Eq.(5).

• Poincaré section : z = 0 with pz > 0.
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Chaos and Periodic Orbits

• Regular and chaotic trajectories are interspersed in phase space.

• Regular motion lies on invariant surfaces where the frequency ratio is
irrational.

• Resonance zones, or islands, will emerge where the frequency ratio
between the r and z motions is rational.

• Associated with each island chain, are the stable and unstable orbits,
which appear as O and X points on the Poincaré plot.

• Chaotic trajectories arise near the unstable X point.

• If the islands are so large that they overlap with nearby islands, then
regions of extended chaos will be produced.
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Zero self-field : Action-angle coordinates

• For the case that the self-field potential is zero, the r and z motions
are independent and the dynamics is integrable.

• The ‘action’ coordinates are

jr = (α− pθ)/2 θr = cos−1[(r2 − α)/β] (7)

jz = (z2η
1
2 + p2

z/η
1
2)/2 θz = tan−1(η

1
2z/pz), (8)

where α = p2
r /2 + p2

θ/2r2 + r2/2, β =
√

α2 − p2
θ .

• H = 2jr + pθ + η
1
2jz.

• ωr/ωz = 2/η
1
2

• resonance will exist when 2/η
1
2 = p/q, where p, q are integers.
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Small self-field : Perturbation Analysis

• Hamiltonian

H = 2jr + pθ + η
1
2jz + ϕ, (9)

where ϕ(θr, θz, jr, jz) = φ(r(θr, jr), z(θz, jz)).

• Writing H = h0 + εh1 where h0 = 2jr + pθ + η
1
2jz and h1 = ϕ, action-

angle coordinates (equivalently, invariants of the motion) for the per-

turbed motion through second order in ε can be constructed and

compared to the exact trajectories.

• For sufficiently small self-field potential, the agreement is generally

good.
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Poincaré section with invariant surfaces constructed from second-order

perturbation theory (η, sb) = (0.3,0.1), (pθ, H) = (1.0, H = 5.0).
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Equations of Motion

• With the selection of the plane z = 0 as the Poincaré section, it is

convenient to consider the independent integration parameter to be

θz, rather than the time.

• The equations to be integrated then become

θ′r = θ̇r/θ̇z, (10)

j′r = dtjr/θ̇z, (11)

j′z = dtjz/θ̇z. (12)

where the ′ denotes the derivative with respect to θz, θ̇r = 2+∂ϕ/∂jr,

θ̇z = η
1
2 + ∂ϕ/∂jz, dtjr = −∂ϕ/∂θr, and dtjz = −∂ϕ/∂θz.

• The mapping from the Poincaré section to itself, the Poincaré map, is

now obtained by integrating these equations from θz = 0 to θz = 2π.
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Lyapunov exponent

• A defining feature of chaos is that particle trajectories have an extreme
sensitivity to the initial conditions.

• Particle trajectory : initial conditions x(0) = (θr(0), jr(0), jz(0)) (where,
given H, jz is constrained)

• Nearby trajectory x(0) + δx(0), where δjz is constrained to lie in the
constant-energy tangent space

δjz = −(∂θrϕδθr + (2 + ∂jrϕ)δjr)/(η
1
2 + ∂jzϕ). (13)

• The trajectories will evolve under Eq.(10-12), and the rate at which
the separation δx(θz) evolves is characterized by the Lyapunov expo-
nent σ

σ(x, δx) = lim
|δx(0)|→0

lim
θz→∞

1

θz
ln
|δx(θz)|
|δx(0)| . (14)
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Linearized Equations

• The limit |δx(0)| → 0 is most conveniently treated by linearizing
Eqs.(10-12) to obtain dδx/dθz = Tδx, where T is the tangent map

T =




∂θ′r
∂θr

,
∂θ′r
∂jr

,
∂θ′r
∂jz

∂j′r
∂θr

,
∂j′r
∂jr

,
∂j′r
∂jz

∂j′z
∂θr

,
∂j′z
∂jr

,
∂j′z
∂jz




. (15)

• The component of δx along the most unstable direction will grow
most rapidly and dominate the computation. For an arbitrary initial
δx, the largest exponent will be calculated.

• After linearizing the equations, all that remains is to follow the tra-
jectory, while evolving the tangent vector, to determine the quantity
ln |δx|/θz as θz → ∞ where |δx(0)| = 1. Typically, a trajectory must
be followed hundreds of oscillations for this limit to converge.
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Periodic Orbits : Lyapunov exponent

• Periodic orbit : θr(2πq) = θr(0) + 2πp and jr(2πq) = jr(0).

• Full-period tangent map, M , at the periodic orbit is obtained

dM

dθz
= TM, with initial condition M = I. (16)

By incorporating Eq.(13), M reduces to a 2× 2 matrix.

• If the eigenvalues are real, the orbit is unstable,

Lyapunov exponent of periodic orbit σpq = lnλ/2πq, (17)

where λ is the maximum eigenvalue.

• Symmetry : periodic orbits lie on the symmetry lines θz = 0, π. The

search for periodic orbits becomes a one-dimensional search in jr.
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Characterization of Chaos

• The eigenvalues of the full period tangent map are related to a quan-
tity called the residue introduced by Greene.

• The limiting residue of an appropriate sequence of periodic orbits may
be used to determine the existence, or non-existence, of an irrational
(KAM) surface.

• Also, the tangent map at the periodic orbits can also be used to
estimate island widths.

• This suggests that an numerically efficient method to quantify the
degree of chaos would be to locate several periodic orbits (usually
those with the lowest values of q are most important, and conveniently
these are of the shortest length), estimate the widths of the islands
associated with these periodic orbits and apply a Chirikov style island
overlap criterion.
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